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I. INTRODUCTION 

The work of Joseph Black greatly advanced the science 

of thermodynamics by his explanation that quantity and 

intensity (temperature) of heat are not identical and that 

all substances do not have identical specific heats. 

Foreshadowing the more highly publicized developments in- this 

field by Laplace and Lavoisier in 1783, Black found in 1?60 

that the amount of heat liberated by ice in freezing is 

equivalent to the amount required for melting and that the 

temperature remains constant through the phase change. In 

1884 Van't Hoff expounded the Principle of Mobile Equilibrium: 

"Every equilibrium between two systems is displaced by fall 

of temperature in the direction of that system in the 

production of which heat is evolved." At this same period, 

Helmholtz established that the true criteria which governs 

the direction of reactions is not the heat evolved, but 

rather the alteration of the available, or free, energy. 

Though many have followed in this field, this is the place 

from which thermodynamics grew, for here are the concepts 

which later are so tightly interwoven: temperature, heat, 

reaction direction, equilibrium, free energy. 

The importance of thermodynamics stems from its universal 

application in technology since it is one of the main tools 

of the engineer and scientist. To aid in their endeavors, 

these workers are constantly in need of new materials or 
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improvement of those of the present. While many applications 

of a material can be made without even knowing its composition, 

much better utilization of its properties is often dependent 

upon the understanding of its constituents and how they 

interact with each other. 

Perhaps the most desirable place to begin to build an 

understanding of the total nature of the surroundings is by 

a thorough investigation into the properties of the elements, 

and then starting to generalize to the more complex systems. 

While a goodly number of the properties of the commonly 

available elements have been measured to satisfactory-

accuracy, continued research has been to add to the number 

of elements with which work is to be done. One example of 

this has been in the production of the elements whose nuclei 

are unstable. Even though they do not occur naturally, it is 

still important to understand their chemical behavior. 

Another example was that of the element scandium which had 

been studied very little in the pure state, but has now 

become available in sufficient quantities for its complete 

study. More striking is the example of the group of rare 

earths which includes nearly one-fifth of the metals of the 

periodic chart. The properties of these elements had not 

been thoroughly studied due to the difficulty in obtaining 

them. However, the development of ion exchange method of 

separation during the 1940's (1) made the pure compounds 

available in quantity and shortly afterward techniques for 
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the preparation of the pure elements (2) were devised. 

The rare earths have the additional advantage that 

aside from their potential importance as individual elements, 

as a group they offer a quite unique testing ground for many 

atomic theories which are concerned with relation of 

properties to electronic structure. The placement of this 

series in the periodic chart is due to the filling of the 

4f shell which lies beneath the surface of the electron 

cloud, while retaining a similar exterior configuration 

generally involving three electrons. The consideration of 

this fact which results in the similarities observed among 

many of the rare earths leads to the potential offered to 

observe the effects on physical properties in alloys by 

controlled variation of one of the parameters. As mentioned, 

however, a more complete knowledge of the individual elements 

is needed to lay a more stable foundation before expanding to 

more complex systems. 

This present study was undertaken to provide some 

information about a little studied member of the rare earth 

series, holmium. This element, whose name indicates its 

Swedish origin, was discovered by D. T. Cleve in 1879, with 

the pure oxide, Ho20^, being isolated by Romberg in 1911. 

The element ranks 56th in order of abundance in the earth's 

crust, twice as abundant as mercury, 12 times that of silver, 

and 250 times that of platinum. If an important commercial 

use were found for holmium it could be made available, as it 
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is in the same order of abundance as germanium and selenium. 

Some of the important properties of holmium which have 

been measured are summarized in Table 1. Two of the most 

striking deficiencies in the information are the high 

temperature heat capacity and the vapor pressure, for these 

values are necessary for evaluation of many high temperature 

processes. 

Table 1. Properties of holmium metal3 

melting point 1461 °C 

boiling point 2?20 °C (this study) 

structure, 25 °C, hep • a = 3.576I A 

c = 5.6174 A 

density 8.803 gm cm-̂  

resistivity, 25 °C 94 fj. ohm cm 

S° 
298.16 

. 17.97 e. u. 

AHs298 69.5 (3) 

71.4 (4) 

69.6 (this study) 

^Values taken from Reference 2 except where noted. 

To supply one of the needed experimental values, a 

study of the vapor pressure of holmium metal was undertaken. 

Consideration of the problem indicated that it could be best 

solved by use of the techniques developed by Knudsen (5) and 
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Langmuir (6)• These allow ail extensive range to be measured 

since they are applicable to different magnitudes of pressure, 

Q ]i 
the Langmuir method valid for the range of 10 to 10 mm 

and the Knudsen method of 10"^ to 10"2 mm, with no reliable 

method available immediately above the Knudsen range. Since 

the methods differ somewhat in theoretical development, 

measurement of the vapor pressure by both would allow a 

correlation and comparison of the data and the methods. 

The measurement of the change of vapor pressure as a 

function of temperature yields the enthalpy associated with 

the process occurring as given by the Clapeyron-Glausius 

equation: 

dE _ AH 
dt T AV 

Thus, measurement of the vapor pressure of the solid yields 

the heat of sublimation; 

(solid) — (gas) 

and measurement of the vapor pressure of the liquid yields 

the heat of vaporization; 

(liquid) -J» (gas) 

The difference in the enthalpies for these reactions yields 

the heat of fusion, since it is the A H of the reaction 

(solid) — (liquid) 
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A method for the measurement of pressures immediately 

above the Knudsen range was needed in this study since the 

vapor pressure of liquid holmium is higher than can be 

measured by that method. Measurement of the vapor pressure of 

both the liquid and solid phases was desired to obtain the 

heat of fusion. 

One factor which must be considered in the flow of 

vapors through tubes or pipes is the restriction imposed on 

the flow due to the length of the pipe. (An orifice in a 

thin sheet, such as used in the Knudsen method, could be 

considered a very short tube») This restrictive nature of 

a long tube has been measured and treated mathematically 

(7,8) and the information obtained offered the possibility 

of capitalizing upon a usually annoying feature since this 

factor could be used to extend vapor pressure measurements 

to higher pressures. 

The knowledge of the vapor pressure of holmium obtained 

is of more value when it can be used in the study of other 

problems. To demonstrate this it was used in a problem 

which arose in the course of the vapor pressure study by 

evaluating the decomposition pressures of some of the 

holmium carbides. 
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II. VAPOR PRESSURE STUDIES 

A. Historical 

There are many experimental methods for the determination 

p 
of the vapor pressures of materials in the region of 10" to 

10"3 ram Hg in use at the present time; however most of them 

owe their original derivation to M. Knudsen (5) or I. 

Langmuir (6). The theory of the Langmuir method is developed 

by considering the equilibrium existing between a condensed 

surface and the vapor over the surface. When the equilibrium 

vapor pressure is established, the number of vapor atoms 

which strike the surface and condense will be equal to the 

number of atoms which escape from this surface. While the 

number of atoms which strike the surface is directly 

dependent on the pressure of the vapor above the surface, at 

very low pressures the assumption is made that the number 

of atoms which escape is independent of the pressure above 

the surface. Under these conditions, the number of atoms 

which escape depends only upon the rate at which the atoms 

acquire sufficient thermal energy to separate from their 

neighbors. Thus it is seen that the condensation rate is 

pressure-dependent and the evaporation rate is pressure-

independent; however, these rates are equal at equilibrium. 

It is therefore possible to determine the number of atoms 

which would leave a metal surface, at any specified 



www.manaraa.com

8 

temperature, from the calculation of the number of atoms 

which would strike the surface from the vapor phase at 

the equilibrium pressure; conversely, by measurement of the 

number of atoms which leave the evaporation surface, it is 

possible to calculate the equilibrium vapor pressure. 

From the kinetic theory of gases it can be shown that 

the mass, m, of vapor atoms which strike a unit area of a 

solid surface in a unit time is given by 

m = i d V 

where d is the density of the vapor and V is the mean velocity 

of the atoms. The mean velocity of the atoms is given by 

v = (M)* 
T M 

where R is the gas constant, T is the absolute temperature 

and M is the molecular weight of the vapor. From the ideal 

gas law PV = §. RT, the pressure, P, can be calculated as 
m 

follows: 

p = aT = (T' ' f1 = ¥ ' 4m ' 

= m • (ZZMf 
M 

This relation describes the pressure when every atom which 

strikes the surface condenses. However if a certain fraction 
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of the atoms, denoted by r, is elastically reflected from the 

surface, the true pressure, P^, is related to the calculated 

pressure, Pc, by the equation; 

The fraction of the vapor atoms which condense, a = l-r, 

was named the accomodation coefficient by Knudsen and has been 

found to be unity within the limits of experimental error for 

many metals. There has been considerable concern expressed 

as to the validity of assuming a to be unity in all cases. 

Hirth and Pound (9) have derived an expression whereby 

c/i which they chose to rename the evaporation coefficient, 

is described in a limiting expression as a function of 

pressure and temperature by 

a= 2/3 |- + 1/3 
e 

where P is the pressure of metal vapor above the metal surface 

and Pe is the equilibrium vapor pressure. From this expres­

sion it can be seen that an experiment devised to reduce the 

vapor pressure above the surface to zero, such as by trapping 

the metal vapors, would result in an accomodation coefficient 

of 1/3. The originators have indicated that this equation is 

applicable to large metal crystals that are relatively free of 

surface imperfections. 

In the Knudsen type experiment, the pressure is calculated 
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from the determination of the mass of vapor which escapes 

into a vacuum through a small orifice from a vessel 

containing the condensed phase in equilibrium with its vapor. 

By controlling the experimental conditions so that the 

orifice area is quite small compared to the evaporation 

area of the sample, it is assumed that the amount of vapor 

which escapes is too small to disturb the metal-vapor 

equilibrium significantly. The vapor pressure can thus be 

calculated from kinetic theory as in the Langmuir derivation 

by: 

B _ m / 2 v RT \ h 
^ - a l M ' 

where a is the area of the orifice. This derivation has 

assumed that every vapor atom which strikes the orifice area 

escapes and none of the atoms are reflected back into the 

vessel by the walls of the orifice. If instead of being a 

small hole in a thin sheet, the orifice is replaced by a 

tube or pipe, the orifice walls will then have an appreciable 

length which results in reflection of some of the vapor and a 

correction associated with the Clausing factor must be added 

to the calculations. The mathematical derivation requires 

that the vapor obey a free molecular type flow and to assure 

this, from mathematical considerations, Knudsen has set the 

qualification that the mean free path must be at least 10 

times the radius of the orifice. 

The many existing modifications used for measuring vapor 
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p ft 
pressures of metals in the range of 10 to 10 mm Hg differ 

primarily only in the manner in which the mass of escaping 

vapor is measured. These can conveniently be divided into 

two classes : those which determine the mass after 

condensation on a target and those which measure the loss 

of mass directly. In the more common methods of the first 

type, the mass is measured on the target by direct weighing, 

by chemical analysis upon removal of the condensate from the 

target, or by utilizing a radioactive isotope of the metal 

in question. The more common methods of direct determination 

of mass have been by measurement of the current produced by 

ionization of the stream of vapor atoms, by suspension of 

the effusion vessel from a sensitive microbalance, or by 

measuring the torsional force exerted by the escaping vapor 

stream on a quartz fiber. Theoretically, the last method 

has the advantage that the molecular weight of the vapor 

species can be calculated from the observed pressures, but 

in practice it has not yielded accurate results. 

In this laboratory, Knudsen vapor pressure determinations 

(10) have been carried out through direct measurement of the 

mass of escaping vapor by suspending the effusion vessel into 

an induction- or resistance-heated furnace from a sensitive 

quartz microbalance of the type developed by Edwards and 

Baldwin (11). This method has proven to be reliable for 

pressures in the range of 10"1 to 10"^ mm Hg, the limits 

being imposed by the convenience of measuring the mass loss 
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per unit time. 

B. Modifications 

A study was undertaken to determine the feasibility 

of extending the range and improving the precision of the 

vapor pressure measurements in anticipation of the 

possibility of obtaining more thermodynamic information 

from vapor pressure studies of the rare earth metals. 

As greater sensitivity of the microbalance could be 

obtained by decreasing the total weight of the load supported 

by the balance beam, the effusion vessel was placed on a 

support inside the furnace and a light weight cylindrical 

graphite condenser suspended from the balance beam in such a 

manner as to surround the upper portion of the effusion 

vessel as in Figure 1. The stationary mounting of the vessel 

removed the restriction placed on the weight of the effusion 

vessel by the relatively small capacity of the balance, and 

thus allowed the possibility of using more massive samples, 

or using a heavier tungsten crucible for those rare earth 

metals which tend to dissolve tantalum metal. The effusing 

metal vapors strike the condenser and are kept from 

redistilling by formation of a non-volatile rare earth 

carbide. This carbide was shown by x-ray diffraction to be 

the dicarbide in the case of holmium metal. 

The upper pressure that can be determined is imposed by 
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A CONDENSER SUSPENSION 

B GRAPHITE CONDENSER 

C TANTALUM EFFUSION VESSEL 

D TANTALUM TUBE HEATER 
E HOLMIUM METAL 

F CRUCIBLE SUPPORT 

Figure 1. Knudsen effusion cell with graphite 
condenser 
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the maximum conveniently measurable weight loss per unit time. 

In order to lower this rate, the orifice was replaced by a 

pipe or a "tube" orifice, which caused a considerable 

percentage of the vapor atoms to be reflected from the 

orifice walls back into the vessel. Several tube orifices 

were made by drilling a small hole through a 5" length of 

in diameter tantalum rod and then welding the rod to the 

top of the effusion vessel as shown in Figure 2. For a tube 

of 0.014" radius and §" length the Clausing factor, K, was 

0.070, i.e. 93# of the vapor atoms would be reflected back 

into the vessel by the orifice walls. The value of K must 

be known to the accuracy of the other experimental variables 

to calculate absolute values of pressure. 

A tube orifice was used to measure the vapor pressure 

P 
of holmium from 10 to 9 mm Hg and it was found to agree 

well with the measurements taken from the overlapping high 

pressure regions of a true Knudsen experiment, using a value 

for K taken from Dushman (12). Above the range of the 

Knudsen experiments the pressures corresponded to a straight 

line extrapolation of the lower values. Although it was 

realized that at pressures near and above 1 mm, the mean free 

path of the vapor atoms is less than ten times the orifice 

diameter as required in Knudsen's original derivation, the 

equations he derived should be applicable up to the pressure 

where the escaping vapor fails to obey a "free molecular" 

flow and is partially transformed into a hydrodynamic type of 
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Figure 2. Photograph of "tube" orifice and 
tube effusion cell (magnification 4x) 
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flow. According to Dushman, a significant contribution from 

hydrodynaraic flow should occur near the pressure where the 

ratio of mean free path to orifice diameter approaches 1. 

This would occur in the neighborhood of 2 mm (1625 °C) for 

holmium metal. 

The extension of the vapor pressure measurements to 

pressures lower than 10"^ mm is not convenient by the 

Knudsen method involving the direct weight loss due 

to the slow evaporation rate through the orifice. 

The Langmuir method may be used to determine pressures 
O 

to 10" or lower by using rather large areas and/or 

long evaporation times. This method has the disadvantage 

that it is necessary to assume that the accomodation 

coefficient is equal to unity. By the use of a 

graphite condenser to capture all of the metal vapor 

in this present study, there was no significant 

condensation from the vapor phase back onto the evap­

oration surface and thus the accomodation coefficient 

would not be a factor in this type experiment. To 

achieve complete condensation on the condenser it is 

necessary that the evaporation surface-to-condenser 

distance be much shorter than the mean free path of the 

vapor atoms, so that there is only very slight chance for 

a collision of vapor atoms which might result in the 

return of some of the vapor to the sample. The mean free 

path (mfp) is given by: 



www.manaraa.com

17 

mfp 1 n number of atoms/cc 

ir n tr 2 cr diameter of atom 

For the case of holmium metal at 1000 °C, the pressure is 

4 x 10"4 mm, and n = 6 x lO^""*" atoms/cc, = 2 x 10 ^ cm 

thus 

mfp 1 1 x 10^ cm 

The surface-to-condenser distance was 0.15 cm, so that the 

necessity of considering the accomodation coefficient is 

removed since there should be no condensation of vapor on 

the sample. 

This type of experiment, as illustrated in Figures 3 and 

4, was run using evaporation areas from 1 to 30 cm2 and was 

found to yield values of vapor pressures in agreement with 

those taken by a true Knudsen effusion method in the over­

lapping pressure region (10~3*5 to 10"^ mm), and the values 

below the Knudsen range corresponded to a straight line 

extrapolation from the higher temperatures. 

C. Discussion and Evaluation 

The preceding parts A and B described a method for the 

— 8 
determination of vapor pressures from 10 to 10" mm by direct 

measurement of the mass of transferred vapor. The success of 
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XT 

A CONDENSER SUSPENSION 

B TANTALUM DISK 

C HOLMIUM METAL 

D GRAPHITE CONDENSER 

E TANTALUM LINED THERMOCOUPLE 
WELL 

B TANTALUM DISK 

/ 
F TANTALUM TUBE HEATER 

Figure 3. Langmuir vapor pressure sample 
with graphite condenser 
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Figure 4. Photograph of Langmuir method samples 
and condenser. Left to right : thin 
sheet of metal formed into a cylinder; 
solid cylinder sample on support rod 
with temperature sensing element 
below sample; graphite condenser 
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this technique in the lower pressure regions depends upon 

the formation of a nonvolatile carbide on the graphite 

condenser to prevent redistillation of any of the metal. 

This condition is satisfied by some of the rare earth metals 

as indicated by the agreement of vapor pressures determined 

by this method and those determined by a true Knudsen method, 

by the total weight gain on the condenser being equal 

(within +0.2$) to the total weight loss of the vessel and by 

the fact that all the condensed metal is observed as a 

sharply defined deposit on the condenser in the region 

corresponding to the sample position and dimensions. Redis­

tillation or reflection would cause the condensate to be more 

randomly distributed over the condenser. 

The use of a condenser allows the use of a more sensitive 

microbalance since it is reasonably well established that the 

sensitivity of a balance follows roughly as an inverse 

relation to the total weight to be supported by the balance. 

More precise measurements could therefore be made by 

suspending the condenser, which weighed only 1.2 grams, rather 

than the Knudsen effusion cell weighing 4-5 grams. In the 

Langmuir method studies, it was not readily apparent how to 

obtain an evaporation area of 30-40 cm2 which could be 

supported on a balance having a capacity of 4 grams. However 

the graphite condenser for this method weighed only 3*5 grams. 

The extended range of measurement should permit a more 

accurate determination of the slope of the log P vs. 1/T 
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curve which is related to the thermodynamic quantities, and 

also enhance the possibility of the determination of the 

enthalpy associated with any phase transformation by 

measurement of the vapor pressures of the constituent 

phases. It would be desirable to achieve sufficient 

precision to enable the determination of the A Cp term, which 

occurs in the integrated form of the vapor pressure equation 

and gives a slight curvature to the vapor pressure curve. 

From this term and the heat capacity of the metal vapor from 

spectroscopic data, the heat capacity of the metal could be 

calculated. This would appear to be beyond the present 

limits of the method as the AC term contributes approximately 
P 

0.2 Kcal per mole per 100°, which is the same order of 

magnitude as the probable error. 
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III. VAPOR PRESSURE OF HOLMIUM METAL 

A. Historical 

Until the 19^0's, the difficulties encountered in 

separation of the rare earths from each other and foreign 

materials were so great that only by diligent and persistant 

efforts (13) could even small amounts of pure rare earth 

compounds be obtained. Now the application of ion exchange 

methods of separation has eased that problem and has 

brought up the less tedious but still perplexing task of 

preparation of the pure elements and the determination of 

their properties. This work is presently well under way, for 

it is observed that in general each new redetermination of 

some property of the metals differs less from the previous 

values, indicating that perhaps the truth is being approached. 

Attempts to apply the process of vacuum melting to the 

rare earths showed that with some of the metals this was very 

successful, while with others it was discovered that 

considerable portions of the metal would be transferred from 

the crucible to cooler parts of the furnace (14). This seemed 

to indicate that the vapor pressure was one of the physical 

properties which would show marked variation among members 

of the rare earth series, and encouraged the quantitative 

study of their vapor pressures. 

Although no vapor pressure measurements had been carried 



www.manaraa.com

23 

out prior to 19^8, Trombe (15) had shown that lanthanum was 

difficult to distill while europium and samarium are more 

volatile. Using metal prepared in refactory oxide containers, 

Ahmann (16) determined the vapor pressure of cerium by the 

radioisotope method developed by T. E. Phipps et al. (17). 

From the slope of the vapor pressure curve he obtained a AH 

of 108 with a root mean square error of the pressure of 11%, 

Brewer (18) mentions in Quill that the evaporation of cerium 

in the range of 1200-1600 °C was carried out at the Berkeley 

laboratories. From their data they report a value of 80 

kcal/mole for the AH, and pressures about 10 times those of 

Ahmann. Daane (10) measured the vapor pressure of lanthanum 

and praseodymium metals, which had been produced in a 

tantalum container, by the Knudsen method modified to 

utilize a quartz fiber microbalance. He obtained a AH = 

81.0 + 1.4 for lanthanum and 79«5 ± 1.1 for praseodymium. 

The vapor pressure of liquid cerium was determined by D. D. 

Jackson and P. W. Gilles (19) in an apparatus designed to 

minimize the effect of contamination of the metal due to a 

poor atmosphere. Utilizing the inductively heated Knudsen 

cell and assaying the vapor which condensed on a target by 

a coulometric procedure yielded data somewhat higher than 

that of Ahmann. The vapor pressure of thulium was measured 

over a range of 10^ by a similar procedure by Spedding et, al. 

(20) who obtained a AH of 59.1 + 0.2. The effusion cell 

was resistance heated and the quantity of effused vapor 
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determined by a radioisotope method. The vapor pressure of 

europium was measured by Spedding et al. (21) using a 

quartz fiber microbalance and resistance heating, and they 

obtained a value of 42.066 + 0.075 for the heat of 

sublimation. The elements scandium (22) and yttrium (23), 

which are closely related to the rare earth metals, were 

measured in a similar manner and the AH values of 80.8 + 0.7, 

and 93» respectively, were obtained. Savitskii (24) measured 

the vapor pressure of erbium metal by a Knudsen effusion 

technique in which the vapor was condensed on a mica plate 

supported on the end of a quartz fiber microbalance. Five 

points were taken on metal reported to be 99*35$ purity and 

the slope indicated a heat of sublimation of 64.75 ± 0.215 

Kcal/mole. 

Since the successful introduction of the mass spectromet­

ry methods to the determination of thermodynamic properties 

by many investigators (3,4,25,26) the rare earth metals have 

been studied by this method. The data from these studies 

are summarized, along with the Knudsen values for comparison, 

in Table 2. As is seen, this method has been quite 

productive even in its comparative youth due to its 

convenience of producing an immediate intensity reading of 

all of the species observed in the vapor, thereby serving to 

identify the major members as well as the impurities. The 

result obtained by this method is only the temperature 

coefficient rather than the absolute value of the pressure. 
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Table 2, Heats of sublimation of the rare earth metals 

Element Knudsen, Langmuir Mass 
Spectrometer Methods 

Scandium 80.8* 

Yttrium 93b 

Lanthanum 97.3°, 8ld 

Cerium 113.8e, 

80g, 

107.7f, 

95° 

Praseodymium 79.5d 85.lh 77.51 

Neodymium 69e 75.oh 77.21 

Samarium 49.9*' 

Europium 42. lk 43.131 

Gadolinium 81.271 83.61 

Terbium 87.5, 87.4-1 

Dysprosium 69° 71.4J 6l.6^ 

Holmium 74.951 69.51 

Erbium 64.75° 75.261 66.41 

Thulium 59.1* 57.65 

Ytterbium 40.oJ 

Lutetium 94.71 

^Reference 22 
^Reference 23 
^Reference 2 
Reference 10 
^Reference 19 
Reference 16 
^Reference 21 

^Reference 26 
^Reference 3 
^Reference 27 
Reference 21 
^Reference 4 
^Reference 24 
^Reference 20 
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To resolve the data to absolute pressures requires calibration 

of the geometry of the system, the orifice, and ionization 

cross sections of the species involved, however due to the 

difficulties encountered in carrying out these calibrations 

it has seldom been done. Values of the enthalpy relation­

ships obtained by the mass spectrometer methods are in 

reasonable agreement with those of Knudsen and Langmuir 

methods, and in general they have associated with them 

probable errors of approximately the same magnitude. 

In continuing the determination of the properties of 

the rare earth metals, the vapor pressure of holmium metal 

was determined by the methods discussed in Part I from 10"^ 

mm (650 °C) to 9 mm (1650 °C). This range covered both the 

solid and liquid phases, allowing the determination of the 

heats of sublimation and vaporization, and from the 

difference between these two, the heat of fusion was 

calculated. 

B. Material 

The holmium metal used in this study was prepared from 

spectrograph!cally pure Ho20^ by a calcium reduction of the 

fluoride as described by Spedding and Daane (2). The metal 

was melted under a high vacuum to remove any volatile 

impurities and then heated to a higher temperature to distill 

the holmium onto a tantalum condenser. The condenser was 
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turned, off in a lathe yielding holmium metal having the 

following analysis: 

Table 3* Analysis of holmium metal (HAB-6) 

Element Element 

Carbon 66 ppm Silicon 0.02# 

Nitrogen 19 ppm. Yttrium 0.01#* 

Calcium 0. 05#^ Dysprosium 0.01#* 

Iron 0. 01# Erbium 0.01#* 

Tantalum 0. Iff Thulium 0,01#* 

No other rare earths detected. 

aThe actual percentage could be much less than these 
values which represent the lower calibration limit. 

^Not detected. 

C• Equipment 

1. Vapor pressure furnace 

The furnace was a tantalum resistance furnace constructed 

in this laboratory and is illustrated in Figure 5» Power was 

supplied to the heating element through a 208 volt, 5KVA. 

Stabiline voltage regulator, a "double-gang" variable 

Powerstat manufactured by Superior Electric Co. and a 10KVA 

Banner step-down transformer. This supplied a maximum of 500 

amperes at 8 volts to the heater which was sufficient to 
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Figure 5* Vapor pressure furnace. A—pyrometer window, 
B—balance coil, C—balance beam with tare 
weight pan, D—tantalum wire suspension for 
condenser, E—water cooled power leads, 
F—molybdenum radiation shielding, G—graphite 
condenser, H—metal sample, I—tantalum 
heating element, J—thermocouple well in 
sample, K—temperature sensing element, 
L—vacuum pump lead, M—sample support of 
411 diameter tantalum tubing, N—thermocouple 
and sensing element leads 
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produce temperatures in excess of 2200 °C in the furnace. It 

was possible to maintain any desired temperature below 1700 °C 

within 2 °C after a short thermal equilibrating time. 

The vacuum pumping system consisted of a liquid nitrogen 

trap, a 4" diameter MCF-300 oil diffusion pump using Octoil-S 

fluid, and a Welch Duoseal Series 1397 B fore-pump. After 

initial outgassing of the furnace and condenser, the vacuum 

was maintained at less than 5 x 10"? mm Hg during all vapor 

pressure determinations. 

A 6 volt battery supplied the current for control of 

the balance and was regulated by a decade resistor box. 

The current was measured by determining the voltage drop 

across a standard resistor using a Leeds and Northrup K3 

potentiometer with a Brown Electronik null indicator. 

Calibration of the balance in terms of millivolts per 

milligram was carried out by determining the change in 

current necessary to return the balance beam to a null 

position after addition of 5 mg rider weights obtained from 

Wm. Ainsworth and Sons. The calibration was found to be 

constant within experimental error over a 100 rag range with a 

sensitivity of 5 micrograms. The null position of the balance 

beam was determined by projection of an image of a pointer on 

the balance beam onto an etched glass screen through a 20x 

telescope with the converging lens removed from the eyepiece. 

For the determinations below 1500 °C the furnace 

temperature was maintained constant to + 0.2° by adaption of 
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the resistance element controller developed at the Ames 

Laboratory by Svec, Reade and Hilker (28). A sensing element 

coil of .005" tantalum wire was wound around a threaded 

beryllia core and the element mounted inside the furnace 

heater immediately below the effusion vessel. Temperatures 

below 1450 °C were measured with a Pt-Ptl3# Rh thermocouple, 

and above 1450 °C a Leeds and Northrup disappearing filament 

optical pyrometer was used. The optical pyrometer was 

calibrated "in situ" against a calibrated Pt-Ptl3$ Rh 

thermocouple and also by observing the temperature at which 

pure platinum melted. 

2. Preparation of sample and effusion vessel 

For determining the vapor pressure in the low pressure 

region of 10"^ to 10~® mm Hg two types of samples having an 

p 
area of 30-40 cm were used. The first type was machined 

to the desired dimensions, 5/8" diameter by 2-3" long, from 

a rod of vacuum cast holmium metal. A thermocouple well was 

drilled to a depth that would place the junction 1/3 of the 

distance from the top of the sample. A 1/4" diameter 

tantalum tube with one end welded shut was inserted into the 

well to protect the thermocouple from attack by the holmium 

vapor. To the upper and lower faces of the sample were 

welded disks of .010" tantalum which protruded 0.005" over 

the side of the sample to remove any chance of contact of 

the condenser and sample which might lead to a transfer of 
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mass to the condenser. 

The second type sample was made by distilling a thin 

layer of holmium, ~ 10 rails thick, onto a 5 mil tantalum 

sheet. The tantalum sheet was then formed into a cylinder 

with the holmium exposed on the exterior to provide an 

evaporation surface for the vapor pressure determination. 

The samples used in the pressure range from 10"^ to 10"^ 

mm Hg were made by machining a rod of holmium to fit tightly 

inside an open tantalum effusion vessel so that the exposed 

surface formed a 1 cm2 evaporation area, or by filling a 

diameter vessel with a freshly distilled holmium crystals. 

The thermocouple well was welded in the effusion vessel in 

such a manner as to -place the thermocouple junction within 

1/8" of the evaporation surface. 

To determine vapor pressures in the range of 10"^ to lO~^ 

mm Hg, a conventional Knudsen cell was constructed by welding 

a 0.0005" tungsten lid containing an orifice 0.028 to 0.060" 

diameter to a diameter effusion vessel. In the bottom of 

the vessel was welded a thermocouple well which projected 

into the cell to g its height so that the thermocouple 

junction would be in a region which was in thermal equilibrium 

with the metal vapor. The orifice area was determined by 

simultaneously photographing the orifice and a stage 

micrometer, as seen through the orifice, on a Bausch and 

Lomb metallographic microscope. The area of the orifice could 

be calculated from a knowledge of the image area and the true 
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magnification determined from the image of the stage 

micrometer. The usual process of reaming and burnishing 

the edge of the orifice to reduce the wall thickness was not 

carried out as it was felt that greater accuracy could be 

obtained by applying a Clausing factor correction to 

orifice walls of known length. 

p 
The vapor pressures in the region from 10 to 9 mm were 

determined by utilizing a tube orifice made from a i" length 

of diameter tantalum rod with an orifice radius of 0.014™. 

Attempts to capture the vapor effusing from the tube orifice 

by the use of a graphite condenser produced rather 

inconsistent results, with the measured pressures being lower 

than the expected values. When it was also noted that holmium 

vapor had condensed on places other than the condenser, this 

was attributed to the possible decomposition of the holmium 

carbide formed on the condenser. However, consistent results 

were obtained by suspending the effusion vessel from the 

balance beam and measuring the amount of holmium vapor lost 

through the orifice. 

3. Condensers 

The graphite condensers used for the samples of largest 

area were made by alternately sanding by hand and heating in 

air by means of a high frequency converter» Beginning with 

a 3/4" inside diameter by 3§" long cylinder which had been 

machined to a wall thickness of 0.015", the sanding and 
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burning process was used to reduce the wall thickness to 

approximately .005" and the weight to 2.5 grams. A graphite 

lid, containing a small hole for the suspension wire, was 

fastened to one end of the cylinder with tantalum wire pins. 

The condenser was hung from the balance beam and aligned in 

such a manner as to allow only 0.050" clearance between it 

and the sample. 

The condenser used for all of the other samples was a 

machined graphite cup 5/8" inside diameter and 3/4" high 

with a wall thickness of 1/32". The total weight was 1.2 

grams. To insure that the condensers would hang vertically, 

they were suspended by a 0.005" tantalum wire with a welded 

bead threaded through a hole in their top. 

D. Procedure 

In the preparation for a run, the vacuum furnace, 

complete except for the sample and thermocouple, was 

outgassed until a vacuum of less than 1 x 10"^ mm could be 

obtained at 2000 °C. The furnace was then backfilled with 

argon and the sample and thermocouple installed. The 

heating was begun slowly enough to prevent the pressure in 

the furnace from rising above 5 x 10mm Hg. When a 

noticeable deflection of the balance beam indicated a 

measurable weight loss, a period of five to ten minutes was 

allowed for thermal equilibrium to be established. The mass 
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of vapor transferred to the condenser in a timed interval 

was obtained from the difference in the current required to 

bring the balance beam to the null position. At least three 

readings were taken at each temperature setting and all 

readings at each temperature were combined to yield the 

points represented on the vapor pressure plots. A run would 

consist of going from the lowest to the highest pressures 

obtainable in the specific experiment several times in 

both directions, resulting in 20 to 30 points. 

E. Calculations 

The data were processed by calculation of the pressures 

on an IBM 650 computer which was programmed to provide a 

straight line fit of the points in each run by a least 

squares treatment to the equation 

log P = -^ + C 

The vapor pressures from all runs were then combined and 

fitted again by a least squares treatment on the computer 

to a single line. The vapor pressure of holmium metal is 

described by the equation 

-I.5137 x 104 
log P mm = % + 8.426 

T K 

and the Vapor pressure of the liquid follows: 

-1.4122 x 10^ 
log P mm = T oK + 7.849 
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Estimating the difference in the enthalpies of the solid 

and the vapor between the mid-range^emperature of the run 

(1061 °C) and 298 °C to be 1.1 kcal, the AH° at 298 °C 

would be 70.6 kcal/mole. 

The values of the Clausing factors used for calculation 

of vapor pressures from the tube orifice were obtained by 

interpolation of the values given in Dushman even though 

more recent calculations by Demarcus (8) have indicated 

that these values may be somewhat in error. Demarcus had 

not listed the values of the Clausing factor for a value 

of l/a, orifice length divided by orifice radius, 

corresponding to the orifice used in this study. Since 

the heat of sublimation values are related to the slope of 

the vapor pressure curve rather than the absolute value of 

the vapor pressure, agreement of values obtained by the tube 

orifice and those obtained by the Knudsen method is not 

absolutely mandatory to obtain a heat of sublimation. 

However, the overlapping region of the two methods was 

sufficient to compare the values listed for the Clausing 

factor correction and the agreement was found to be within 

experimental error. 

F. Data 

Tables 4 through 11 consist of the data which were 

observed and the calculated vapor pressures of holmium metal 
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that are plotted in Figures 6 through 10. Each table 

represents the data from one run. The headings include the 

measured constants common to all points of the run and the 

computed values of the constants, A and B, in the log p 

equation, AH, and the probable error in the pressure (PEP) 

observed from the statistical variation observed in the 

points. 

G. Errors 

The formula used for the calculation of the vapor 

pressures is: 

P = m • 1 • (ÏJLÂ)* • (T)* 
a M 

The value of E was taken to be 8.314 x 10? erg (°C)""•'• 

-1 
(mole)" (29) and the mass of holmium, 164.94, (30) was used. 

The error in these is so small in comparison to other errors 

as to be insignificant. 

1. Area 

The value of the area of the orifice was measured by the 

procedure described previously. While the absolute error is 

difficult to estimate, the deviation from the mean of the 

value obtained on several measurements was taken to be of the 

order of magnitude of the error and was found to be 0.2#. 
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Table 4. Vapor pressure data 

Bun Ho C-6 Results: H 66.47 + .34 

Area 4.14 x 10"^ cm2 A 14527 

Temperature measurement pyrometer B 6.479 

Clausing factor 0.06l PEP 1.8# 

Point Time, Mass, Temperature, lO^/T °K -Log P, 
sec mv °K mm 

1 287 17.918 2055 4.866 -0.9845 
2 701 1.125 1659 6.028 0.6520 
3 969 4.248 1756 5.695 0.2032 
4 441 2.471 1781 5.615 0.0935 
5 490 3.546 1807 5.534 -0.0207 

6 502 3.032 1790 5.587 0.0598 
7 518 2.428 1764 5.669 0.1731 
8 519 1.979 1745 5.731 O.2651 
9 948 2.484 1712 5.841 0.4322 
10 696 2.242 1731 5.777 0.3401 

11 1327 1.876 1659 6.028 0.7070 
12 7670 1.916 1524 6.562 1.478 
13 46142 2.545 1435 6.969 2.147 
14 I652 1.671 1632 6.127 0.8560 
15 3803 1.860 1575 6.349 • 1.179 

16 1008 2.381 1701 5.879 0.4786 
17 568 2.676 1764 5.669 0.1709 
18 224 1.624 1804 5.543 -0.0212 
19 233 1.200 1773 5.640 0.1311 
20 270 1.899 1807 5.534 -O.OO83 

21 222 1.990 I836 5.447 -O.II7I 
22 182 3.178 1907 5.244 -O.415O 
23 219 5.171 1942 5.149 -O.55OO 
24 375 5.036 1879 5.322 -0.2977 
25 726 7.530 1859 5.379 -O.I832 

26 580 5.888 1836 5.447 -O.I712 
27 431. 10.309 1948 5.133 -O.5562 
28 320 10.675 1991 5.023 -0.7055 
29 241 11.829 2023 4.943 -0.8766 
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Table 5» Vapor pressure data 

Run Ho C-ll Results: H' 68.45 ± .23 

Area 4.215 x lO-4 cm2 A 1.4960 

Temperature measurement thermocouple B 6.658 

Balance constant 1.569 mv/mg PEP 1,1% 

Point Time, Mass, Temperature, 104/T °K -Log P, 
sec mv °K mm 

1 567 2.268 1707 5.858 0.4764 
2 739 2.663 1699 5.886 0.5227 
3 741 2.394 I690 5.917 0.5713 
4 935 2.253 1666 6.002 0.7018 
5 750 5.0115 1752 5.708 0.2479 

6 549 4.3452 1767 5.659 0.1725 
7 25984 3.8243 1461 6.845 1.944 
8 935 1.722 1643 6.0845 0.821 
9 3589 .8080 1489 6.712 1.756 
10 2254 .9810 1533 6.523 1.463 

11 754 3.690 1725 5.797 0.3865 
12 383 4.618 1808 5.531 -O.OI53 
13 1222 1.852 1627 6.146 0.9083 
14 942 . 1.925 1650 6.061 0.7754 
15 754 2.044 1674 5.974 0.6496 

16 419 3-358 1767 5.658 0.I670 
17 738 2.795 1699 5.886 0.5011 
18 694 3.102 . 1713 5.838 0.4274 
19 522 2.125 1705 5.865 0.4690 
20 403 1.983 1723 5.804 0.3844 

21 384 2.234 1736 5.760 0.3100 
22 570 3.984 1751 5.711 0.2285 
23 587 5.981 1785 5.602 0.0606 
24 394 6.017 1825 5.479 -0.1199 
25 383 7.863 1858 5.382 0.2523 

26 24977 3.029 1443 6.930 2.031 
27 2189 1.9451 1582 6.321 1.146 
28 1066 1.234 1601 6.246 1.029 
29 601 2.0029 1688 5.924 0.5581 
30 1027 4.2261 1705 5.865 0.4643 
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Table 5 (Continued.) 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

104/T OK -Log P, 
mm 

31 406 2.726 1747 5.724 0.5581 
32 465 3.976 1770 5.650 0.1386 
33 . 474 5.238 1794 5.574 0.0243 
34 409 5.616 - 1813 5.516 -O.O723 
35 350 6.247 1838 5.441 -0.1892 

36 293 6.507 1874 5.336 -0.2883 
37 965 1.534 1620 6.170 0.8884 

The values obtained with this method were compared to those 

obtained by measurement of the radius of the orifice with a 

Filar eyepiece and it was found that the areas agreed within 

the experimental error. The value of the radius of the tube 

orifices was not determined in the photographic method, but 

rather by measuring the diameter" of the hole of each end of 

the orifice and using the average value in the calculations. 

Here the value of the error was taken to be equal to the 

deviation from the average and resulted in an error of 0.5#. 

The value of the evaporation area of the samples used for the 

Langmuir method were measured with a micrometer and were 

accurate to + 0.01 cm, so that the 0.3# was added to the error 

in p. 

2. Mass 

The balance calibration was carried out using the 

calibrated 5 mg riders which were accurate to + 0.002 mg, but 
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Figure 6. Vapor pressure of holmium metal 
determined with "tube" orifice 
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Table 6. Vapor pressure data 

Run Ho C-3 Results: H 71.01 + .38 

Area 1.582 x 10~2 cm2 A 1.5518 

Temperature measurement thermocouple B 11.495 

Clausing factor 0.992 PEP 1.2# 

Balance constant I.569 mv/mg 

Point Time, Mass, Temperature, IOVT °K -Log P, 
sec mv °K mm 

1 657 1.890 1418 7.052 2.231 
2 2147 3.729 1392.6 7.181 2.454 
3 2958 3.226 1366.8 7.316 2.660 
4 507 1.782 1432 6.983 2.142 
5 757 3.150 1446 6.916 2.066 

6 508 2.759 1459 6.854 1.949 
7 382 2.543 1473.6 -6.786 1.858 
8 341 2.756 i486.9 6.725 1.772 
9 343 3.375 1494.2 6.693 1.685 
10 319 3.757 1513.3 6.608 1.605 

11 874 2.165 1416 7.062 2.296 
12 3054 2.031 1343.6 7.443 2.879 
13 22181 3.162 1267.5 7.890 3.560 
14 7067 1.942 1300 7.692 3.270 
15 • 5275 2.195 1321 7.570 3.086 

a more significant contribution to the accuracy of the 

balance is in the determination of the null point. It was 

determined that the null point could be reproduced on a 

reading to + 0.003 mv which is + 2 /tgram, so that with the 

average weight loss used 0.2# would be the maximum error 

introduced into p from this cause. 
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Table 7« Vapor pressure data 

Bun Ho C-5 Results: H 69.27 + .39 

Area 3*995 x 10"3 cm2 A 1.5137 

Temperature measurement thermocouple B 9.155 

Clausing factor 0.983 PEP 1.5% 

Balance constant 1.616 mv/mg 

Point Time, 
sec 

Mass, 
mv 

Température, IOVT °K -Log p, 
mm 

1 357 2.187 1556 6.427 1.294 
2 1093 2.074 1477.5 6.768 1.814 
3 4238 2.197 1400.8 7.139 2.389 
4 5355 1.366 1361 7.348 2.703 
5 1743 5.471 1515 6.601 1.590 

6 417 4.609 1600 6.250 1.031 
7- 284 5.553 1648 6.068 0.7771 
8 260 9.477 1702 5.875 0.4996 
9 461 2.6622 1561 6.4 06 1.319 
10 1294 1.2389 1443 6.930 2.116 

11 22659 3.151 1331 7.513 2.971 
12 4590 2.257 1402 7.133 2.412 
13 365 1.945 1555 6.431 1.354 

3. Temperature 

Thermocouples were calibrated at the copper and aluminum 

melting points. The thermocouples were used to measure 

temperatures up to the range of 1450 °C, so that the accuracy 

in the range should fall well within + 0.5°. Temperatures 

above 1450 °C were measured with an optical pyrometer which 

had been calibrated in situ as mentioned. The variation of 

the reading was within + 2° and the accuracy estimated to be 
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Table 8. Vapor pressure data 

Bun Ho C-25 

Area 5*580 x 10" 3 cm2 

Temperature measurement thermocouple 

Clausing factor 0.964 

Balance constant 1.601 mv/mg 

Results: H 68.88 + .29 

A 1.5055 

B 8.481 

PEP 

Point Time, Mass, Temperature, 103/T °K -Log P, 
sec mv °K mm 

1 1445 1.415 1417 7.057 2.243 
2 . 1227 3.954 1494.6 6.691 1.7144 
3 923 2.560 1483.5 6.741 1.7811 
4 1679 3.884 1471.7 6.795 1.8617 
5 11330 .968 1281.5 7.803 3.324 

6 23286 1.306 1263.7 7.913 3.510 
7 5390 .628 1297.2 7.709 3.187 
8 3732 .5730 1313.2 7.615 3.064 
9 2980 .6720 1332.4 7.505 2.894 
10 871 1.010 1427.9 7.003 2.168 

11 1025 1.734 1451.3 6.890 1.993 
12 1100 2.162 1461.4 6.843 1.927 
13 903 2.776 1483.9 6.739 1.729 
14 660 4.653 1544.8 6.473 1.360 
15 581 4.755 1556.9 6.423 1.294 

16 668 7.538 1580.8 6.326 1.151 
17 712 9.803 1595.8 6.266 1.062 
18 273 1.387 1522.8 6.567 1.505 
19 5400 1.762 1354.5 7.383 2.723 
20 2104 .9300 1371.5 *7.291 2.589 

21 2150 1.108 1379.5 7.249 2.521 
22 1503 .9720 1392.3 7.182 2.420 
23 944 .9580 1418.8 7.048 2.220 
24 602 9.745 1610.6 6.209 0.9900 
25 600 12.65 1630.2 6.134 0.8726 
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Figure 7. Vapor pressure of holmium metal 
determined by Knudsen method 
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Table 9. Vapor pressure data 

Run Ho C-33 Results: H 69.79 ± .33 

Area 1.160 cm2 A 1.5228 

Temperature measurement thermocouple B 8.472 

Clausing factor 1.000 PEP 1.4# 

Balance constant 1.575 mv/mg 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
K 

104/T °K -Log P, 
mm 

1 791 3.003 1217.9 8.211 4.017 
2 1298 2.134 II83.I 8.452 4.386 
3 849 2.495 1205.2 8.297 4.130 
4 755 2.865 1216.6 8.220 4.017 
5 589 4.040 1243.4 8.042 3.755 

6 619 5.903 1259.7 7.938 3.609 
7 1025 4.784 1225.4 8.161 3.926 
8 879 1.950 1191.5 8.393 4.255 
9 920 .9780 1163 8.598 4.580 
10 631 1.538 1194.2 8.374 4.213 

11 1193 1.091 1155.6 8.654 4.646 
12 2152 I.I83 1135.5 8.807 4.871 
13 3218 1.3336 1124 i, 9 • 8.890 4.996 
14 2478 .6889 1111.7 8.995 5.172 
15 3768 .7443 1099.2 9.098 5.323 

16 5646 .6474 1081.4 9.247 5.562 
17 5398 .4850 1073.2 9.318 5.670 
18 18342 1.0076 1057.2 9.459 5.887 
19 22571 .7713 1037.2 9.641 6.097 
20 1094 .8236 1147.2 8.717 4.732 

21 993 1.549 1176.5 8.500 4.411 
22 659 4.648 1244.8 8.033 3.743 
23 597 4.717 I250.I 7.999 3.693 
24 437 4.240 1259.6 7.939 3.602 
25 547 8.625 1284.2 7.787 3.387 
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Table 10. Vapor pressure data 

Run Ho C-8 

Area 29.280 cm2 

Temperature measurement thermocouple 

Clausing factor 1.000 

Balance constant 1.585 mv/mg 

Results! H 70.82. + .28 

A 1.5476 

B 9.896 

PEP 1.8% 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

IOVT °K -Log P, 
mm 

1 307 3.460 1124.3 8.894 4.963 
2 500 3.058 1102.3 9.072 5.233 
3 765 2.384 1079.6 9.263 5.530 
4 1471 2.277 IO.54.9 9.480 5.839 
5 404 6.154 1134.9 8.811 4.830 

6 279 8.230 1167.4 8.566 4.537 
7 169 9.552 1186.7 8.427 4.251 
8 1272 2.8502 1068.5 9.359 5.676 
9 634 6.392 1119.7 8.931 5.013 

10 4544 2.2865 1022.9 9.776 6.334 

11 697 2.585 1085.7 9.211 5.454 
12 278 5.925 1147.9 8.712 4.682 
13 70 7 1.797 1072.2 9.327 5.620 
14 5200 1.377 1002.4 9,976 6.617 
15 15990 .959 960.2 10.41 7.272 

16 1879 .464 1002.9 9.971 6.648 
17 4530 1.196 1075.6 9.297 5*603 
18 1785 1.622 1041.3 9.603 6.074 
19 2260 .752 1012.6 9.876 6.516 
20 10041 .937 976.6 10.24 . 7.076 

21 8770 1.173 987 10.13 6.917 
22 43OH 1.266 947 10.56 7.584 
23 2330 1.800 1036.9 9.644 6.145 
24 706 2.394 IO83.9 9.226 5.493 
25 159 1.791 1124.3 8.894 4.964 
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Table 11. Vapor pressure data 

Run Ho C-27 Results: H 70.1 + .8 

Area 17.92 cm2 A 1.532 

Temperature measurement thermocouple B 8.53 

Balance constant 1.575 mv/mg PEP 2.5# 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

IOVT °K -Log P, 
mm 

1 907 1.563 1081.5 9.246 5.571 
2 7730 2.696 1105.7 9.044 5.260 
3 1206 2.521 1087.4 9.196 5.486 
4 1306 1.810 1073.7 9.314 5.667 
5 1964 1.671 1057.9 9.453 5.882 

6 8540 1.971 1012 9.881 6.459 

within +5°» so that the error introduced in p from this 

source in the region 1770 °K to 2055 °K would be estimated 

as 0.3#. 

4. Time 

Time was measured with a Labchron Electric timer so that 

the only significant error would be in reading and recording 

of the time. This error was estimated to be + 1 second. On 

the shorter times this may amount to as much as 0.5#, but a 

more average value would be 0.2#. 

5. Clausing factor 

The value of the Clausing coefficient was as an 

interpolated value from those listed in Dushman for the case 
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Figure 8. Vapor pressure of holmium metal 
determined by Langmuir method 



www.manaraa.com

50 

Figure 9. 

7 

I O 4 / T ° K  
Vapor pressure of holmium metal from 
all three methods 
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of the tube orifice and as such would be subject to an 

estimated error of up to + 1#. This large an error was 

estimated in consideration of the studies of Demarcus 

which indicate that there is some variation between the 

values he calculates and the less refined values of Clausing. 

For the correction to the thin walled orifices of the true 

Knudsen method, the values as interpolated from those in 

Demarcus were used. These were probably accurate to .2# and 

would add in correspondingly in p. 

The total of the estimated maximum errors would be 

obtained by the summation: 

area .0.5# 
mass 0.2% 
temperature 0.2# 
time 0.5# 
Clausing factor 1.0$ 

2.4# 

From the statistical variation of the points listed of probable 

error in p on the data sheets, the errors are seen to be less 

than the total error as estimated above. This is as would be 

expected, since the errors may add in such a manner as to 

cancelo Overall the agreement among the points in a run and 

among the various runs appears to be quite consistent. 

H. Discussion 

Utilizing the modifications of the Knudsen and Langmuir 

methods of vapor pressure measurement discussed in Part I, the 
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vapor pressure of holmium metal has been measured from 9 to 
Q 

10" mm. While the changes made are in part exceeding the 

restrictions placed on these methods by their originators, 

the apparent compatibility and consistency observed is 

offered as justification that the results are valid. It is 

expected that the methods can be applied in the general case 

to other metals. The essential requirements for using the 

graphite condenser would be that the metal form a carbide of 

sufficient stability in the temperature range to be studied. 

(Sufficient stability for the carbide was qualitatively 

defined as having a decomposition pressure of less than 10"^ 

p 
times the vapor pressure of the metal. A factor of 10 was 

felt to be within an allowable error of 1% and the 

consideration that the condenser presents an evaporation area 

2  - 2  
of 10 that of the orifice introduces another factor of 10" .) 

In the case of the tube orifice, the maximum pressure 

measurable is where the Knudsen vapor pressure equations no 

longer relate the effusing weight and the pressure. If the 

weight loss can be related to the actual pressure by using 

both Knudsen flow and hydrodynamic flow equations, higher 

pressures can be measured. The higher pressures might be 

expected to enhance the possibility that atoms in the metal 

vapor form dimers, although this fact is at least in part 

negated by the higher temperature involved. Noting the work 

of Carlson (31) on the vapor pressure of mercury in an 

apparatus similar to the one used in this study, the deviation 
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from Knudsen flow was observed to take place at a pressure of 

ca. 10 mm. As was inferred by Dushman and indicated by 

Carlson, this occurs wherein the mean free path and the 

orifice diameter become of equal magnitude. The data 

recorded for holmium at this pressure do not indicate a 

noticeable deviation, but the mfp of holmium at 10 mm 

(1750 °C) is considerably greater than the mfp of mercury 

at 10 mm which occurs at the lower temperature of 180 °C. 

The extended range of the present work enhances the 

possibility that a first order transformation will lie in 

the range of convenient measurement, so that determination 

of the pressure over the higher and lower phases may be 

accomplished and from the difference of their enthalpies, 

the enthalpy of transformation obtained. For the case of 

holmium metal, the vapor pressure over both the solid and the 

liquid state was measured and the difference in enthalpies 

was assumed to be the heat of fusion. The enthalpies observed 

(in kcal/mole) were: vaporization 64.7 ± .5» sublimation 

69.3 ± e4, fusion 4.6 + .6. More properly the differences 

in the enthalpies were taken to be the AH for the reaction: 

holmium (hep) —- holmium (liquid) 

It was observed that the points obtained immediately 

below the melting point show a greater scatter than those of 

other portions of the curve. One postulate offered to 

explain this is the possibility of some sort of "premelting 

phenomena". In their study of the heats of sublimation and 
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vaporization of neodymium, Johnson et al. (26) observed a 

rather similar anomalous behavior wherein the sublimation and 

vaporization curves did not intersect at. the melting point. 

Berg (32) noted in a calorimetric study of some of the rare 

earth metals that the enthalpy increased somewhat abnormally 

just below the melting point. The earlier melting points 

taken by the pointer indentation methods (33) were quite low 

,due to the extreme softness of the metals below the melting 

point. A number of other examples have been cited by 

Schnieder (34) which indicate that this is not an extremely 

uncommon phenomenon. There is the possibility that a 

crystallographic transformation of holmium occurs in this 

region, since in a study by Hanak (35) an anomaly was 

observed in the thermal resistivity curve at 1442 °C. If 

such a high temperature reaction takes place, it would not be 

expected to be observed in this study due in part to the 

rather short temperature range of stability and also to an 

expected small heat of transformation, since the enthalpy 

of crystallographic transformations in other rare earth metals 

are in the order of 500 cal. Subsequent thermal resistivity 

studies of holmium metal carried out in this laboratory have 

not yet definitely confirmed such a transformation.1 

In evaluating the results of vapor pressure studies, the 

^Habermann, C. E., Ames, Iowa. Data on the thermal 
resistivity of rare earth metals. Private communication. 
1961. 
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calculation of the A H 29 8 from the third law method (29,36) 

gives an extra check on the consistency of the data. For 

monatomic vapors, this method requires knowledge of 

experimental values only of the electronic energy levels of 

the gaseous atoms and the heat capacity of the solid to 

calculate the free energy functions. 

One of the most challenging problems which has faced 

rare earth investigations has been thé solution and correct 

assignment of energy levels of the gaseous atoms. This is 

usually done from the spectrographic data; however, the utter 

complexity of the spectra observed for some of the rare 

earths, due to the numerous low lying energy levels, has made 

an acceptable explanation of these levels impossibly difficult. 

Only in the recent literature (38) has even the simple 

assignment of the ground state of the vapors of dysprosium, 

erbium, holmium and praseodymium been reported from 

experimental data; the ground states of cerium and terbium 

have not yet been established. 

The relationship of vapor pressure studies and electronic 

energy levels is used to evaluate the heat capacity of the 

vapor and obtain free energy functions to calculate the 

third law value of the heat of sublimation. Thus it is 

observed that if the free energy functions of the vapors are 

based on something other than experimental numbers, as would 

be the case in the absence of the electronic energy level 

measurements, the value of the third law calculation is 
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lessened. In the case of an atom where the number of energy 

levels is restricted at the temperatures in question, the 

error associated with the neglect of the electronic 

contribution will be nil. However, holmium with its partially 

filled f shell and the possibility of interaction with the 5& 

levels would be expected to have a rather large electronic 

contribution to the free energy function. Therefore rather 

than estimate the free energy function associated with the 

vapor, it was considered more profitable to attempt the 

calculation of the electronic contribution to the free energy 

function from the measured values of vapor pressure. Stull 

and Sinke (38) have estimated the heat capacity and 

calculated the free energy values of solid holmium. It was 

assumed that the values in their table were reasonably 

accurate since comparison of their estimates with the 

measured values of Gerstein e_b al. (39) shows agreement 

within the experimental error. The value of the heat of 

sublimation of holmium at 0 °K was taken to be 71.0 Kcal/mole 

obtained from the slope of the measured vapor pressure curve 

by estimating the A to be 0.4 Kcal. The vapor 

pressure data were then used with these values to obtain 

the free energy function of the vapor. All of the 

contributing factors to the free energy function of the 

vapor except the electronic portion can then be subtracted 

to give the electronic contribution. The values of In Q and 

Q, are listed in Table 12. 
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Table 12. Calculation of log Q. from vapor pressure data 

°K fef (s)a fef (s)b fef (g) -In P E In P A Hg B In Q Q, 
298 0 -R In Q, atra T 

900 20.44 18.81 41.748 11.053 50.575 78.888 5.37 15.0 
1000 21.44 19.53 42.272 9.363 42.842 71.000 5.42 15.4 
1100 21.93 20.19 42.746 7.985 36.539 64.543 5.43 15.4 
1200 . 20.44 20.63 43.178 6.851 31.350 59.166 5.44 15.6 
1300 22.85 21.39 43.576 5.878 26.898 54.615 5.43 15.4 

1400 23.27 21.90 43.944 5.043 23.077 50.714 5.58 16.7 
1500 23.68 22.40 44.287 4.333 19.828 47.333 5.61 16.9 
1600 24.07 22.87 44.608 3.695 16.908 44.375 5.71 17.7 
1700 24.46 23.33 44.910 3.163 14.474 41.765 5.74 18.1 
1800 24.86 23.80 45.193 2.663 12.186 39.444 5.86 19.2 

a F° - H° 
228) 

T 

b F° - H° 
( r-2) 

s 

s 
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In observing the values of Q, obtained for holmium and 

compared to some of the more common elements in Table 13, 

more reason is seen for handling the calculations in this 

rather unorthodox method, since the effect of the numerous 

energy levels available is to increase the entropy of the 

vapor. 

Table 13. Electronic contribution to ® , cal/deg 

0°Ka 1000°K 1500°K 0°Ka 1000°K 1500°K 

K 2 2.0 2.0 Sc 4 8.71 4.10 
Bb 2 2.0 2.0 Y 4 6.80 7.61 
Cs 2 2.0 2.0 La 4 5.56 7.32 
Ca 1 1.0 1.0 Nd 9 11.6 14.4 
Sr 1 1.0 1.0 Sm 1 8.88 10.1 

Ba 1 1.0 1.002 Eu 8 7.95 7.91 
Ba 1 1.0 1.0 Gd 5 14.3 22.8 
Ti 5 1.56 17.2 Yb 1 1.0 1.01 
Zr 5 . 9.63 12.18 Lu 6 4.28 4.86 
Hf 5 5.03 .5.57 Ho 16 15.4% 16.9b 

Data from References 29, 38. 

aFor the vapor in the ground state. 

^This study. 

Some question exists as to the most informative manner to 

plot the values of Q as a function of the temperature, since 

the mathematical form of the function is the complicated 

summation: 

Q. = £ (2J± + 1) exp ^ 
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It is noted from the table that the values of Q, increase 

with temperature in the manner expected. The value of Q, at 

lOOO °K (15.4) is less, though perhaps not by a significant 

amount, than the minimum predicted value (16) from the J 

value of the ground state of the vapor, and would indicate 

that some error exists in the data or in the estimated values 

of heat capacity. 

In correlation with the spectroscopic energy levels 

being discussed, another interesting phenomenon occurring in 

the phase change process should be noted. The recently 

determined energy levels indicate that the vapor ground 

11 2 
state is the 4f 6s configuration. Noting the determinations 

of the electronic states of rare earth metals (40), there is 

reasonably well established agreement that holmium metal is 

tripositive, i.e. that of the thirteen electrons above the 

closed shells, there are only ten in the 4f shell while the 

other three electrons are involved in the metallic bonding. 

Thus it is observed that the effect of the interaction of the 

much nearer neighbors in the condensed phase is to "promote" 

one of the electrons from the 4f shell, the reverse being 

effected in the sublimation process. While this at first may 

seem unusual, it is not unreasonable, since the energies 

involved in this transfer are in the reverse order and no 

doubt of much smaller magnitude than the other process 

occurring: in the exothermic process of condensation, a 

small amount of energy is absorbed in the removing of the 
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electron from the 4f shell, while in the endothermic 

process of sublimation, the electron would appear to give 

up energy by the process of dropping to the 4f shell. One 

might further speculate that this is actually the result of 

the added energy that is to be achieved by having three 

electrons take part in the metallic bonding rather than 

just the two 6s electrons, especially when it is noted that 

the rare earth metals which show an apparent divalency in 

the metallic state have much lower cohesive energies. This 

is exemplified by europium and ytterbium in which the 

tendency to form the half filled or filled 4f shell leads 

to additional stability by Bunds' Rules. The metal samarium 

would lie somewhere intermediate in both apparent valency 

and cohesive energy. 
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IV. DECOMPOSITION PRESSURES OF HOLMIUM CARBIDES 

A. Historical 

Although basic information about the elements is of 

value, further justification for making of measurements of 

properties is provided through the use of this knowledge » 

The opportunity to provide an example of how the knowledge 

gained about holmium could be used arose very naturally 

in this study. This was in the consideration of the nature 

of the reaction of the holmium metal vapor and the graphite 

condenser which was used to weigh it. While it was not 

within the intended scope of this study, the complete lack 

of thermodynamic data about the rare earth carbides prompted 

additional studies on the holmium carbides as well as the 

dicarbide. In a study of this type, however, a complete 

interpretation of the pressures measured requires that both 

the reactant and product phases be known. 

The success of the method of using a graphite condenser 

to capture the rare earth metal vapors in the vapor pressure 

studies of part II depended on the stability of the carbide 

formed. This was because any loss of material, either metal 

or carbide, by vaporization from the condenser would 

invalidate the weight readings observed. By x-ray diffraction 

the material on the graphite condenser was identified to be 

holmium dicarbide first reported by Gschniedner (41). As he 
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noted, the material is hard, brittle, gold colored and 

reacts very rapidly with any moisture to release a mixture 

of hydrocarbons. 

The thermal stability of a rare earth dicarbide has 

been reported in the work of Chupka et al. (25) > in which 

the decomposition pressure of lanthanum dicarbide was 

studied. It was discovered that LaC^ vaporized congruently 

by measuring the relative mass intensities of the vapor 

species on a mass spectrometer. A peak of less intensity 

than the LaCg (g) peak was observed for La(g), and from 

these was calculated the quantity 

K = p La 

eq P LaC2 

which is the equilibrium constant for the reaction 

LaC2 (g) — La (g) + 2C (s) ' . 

K varied from 0.7 at 2530 °K to 0.21 at 2240 °IC. 
eq 

A study of a somewhat different nature of the rare earth 

carbides was carried out by C. L. McCabe (42) in which he 

describes some of the thermodynamic properties of compounds 

of praseodymium and cerium with carbon in the metal-Hg-CH^ 

system. The AF^gg, AH^g, and AS^g for the formation of 

PrC and CeC were calculated, though other investigators have 

not reported the existence of these phases in mixtures of the 

rare earth metal and carbon. 
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It has also been noted that the stability of the rare 

earth carbides is related to the volatility of the metals, 

in that the more volatile rare earths have relatively less 

stable carbides. Spedding et al. (41) stated that the 

dicarbide of ytterbium decomposed to the metal and 

graphite at the temperature of only 800 °C in vacuum and 

this fact has served as an aid in the preparation and 

separation of this metal from a mixture of other rare earth 

oxides (42). Quill (43) indicates that the dicarbides of Y, 

La, and Ce are unstable in the presence of water. Vickery 

(44) has studied the structures of the dicarbides of all the 

rare earth metals, prepared by the reaction of rare earth 

oxide with powdered carbon. He also notes the reactivity 

of these materials with water, but does not comment on the 

relative thermal stabilities. Other investigators hâve 

prepared rare earth carbides in programs where they have 

studied the hydrolysis products of these compounds. 

• Spedding etal. (4l) examined some holmium carbon alloys 

and found evidence for the dicarbide and sesquicarbide, 

which are isostructural with the corresponding lanthanum 

compounds, and the existence of a fee phase which appeared 

to be "tri-rare earth carbide", plus some other structure 

or structures. They suggested a dimorphism of the sesqui-

carbide might be the cause of the extra lines observed in 

diffraction patterns of the low carbon content alloys. 

Evidently no attempt has been made to measure the thermal 
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stability of the rare earth sesquicarbide compounds. No 

reports of the phase diagram studies of the heavy rare 

earth metals with carbon were found. 

The Knudsen method of the determination of the 

decomposition pressure of the holmium carbides was chosen 

because of the availability of the equipment, convenience, 

and accuracy. Since this method measures the equilibrium 

pressure, this should represent the maximum rate at which 

material would leave the condenser. If the evaporation 

coefficient is less than unity, this would lead to a lowering 

of the weight loss rate. This procedure necessitated the 

characterization of the vapor phase to determine whether it 

had the same composition as the solid phase or was arising 

through some decomposition mechanism. This question becomes 

especially pertinent in the light of Chupkas' study on the 

dicarbide of lanthanum in which he observed both the metal 

and dicarbide vapors. To determine the composition of the 

vapor, a graphite condenser which had been used to determine 

the vapor pressure of holmium metal, and thus containing a 

known quantity of holmium, was heated in the absence of the 

effusion vessel to a temperature sufficient to cause a 

noticeable weight loss rate. It was observed that this rate 

could be measured at various temperatures and used to 

calculate a straight line relationship of weight loss rate 

versus 1/T, if a constant value was assumed for the molecular 

weight of the vapor and the orifice area was taken to be the 
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opening in the condenser, i.e. .75" diameter. This rate was 

dependent only upon the temperature until a mass of ca. 95$ 

of the mass of holmium metal originally added had been lost. 

Following this was a somewhat lowered weight loss rate until 

the condenser had returned to its original weight. Two 

other runs were made by vaporizing a known amount of holmium 

metal onto the graphite condenser to form the carbide and 

then measuring the rate of decomposition. (See Table 14.) 

Table 14. Decomposition of carbides 

Metal Total Metal Carbon 
distilled distilled 
onto off 
condenser condenser 

161.0 mg Ho l6l.6 mg l6l.0 mg .6 mg HoC2- Ho(g) + 2C(s) 

164.5 mg Ho 170.5 169.5 1 .0 HoC2-Ho(g) + 2C(s ) 

147.5 mg La 110.0  67.6 42 .4 
^7,2 

168 mg La 92.9 64.4 28 .5 LaG4.9 

The condensers were removed and ignited in a muffle furnace in 

air to verify that the holmium had been entirely vaporized, 

and resulted in less than 0.2 mg ash. From this it was 

concluded that the dicarbide of holmium dissociates into the 

metal vapor and graphite. 

A similar series of experiments was run by vaporizing 

a known amount of lanthanum metal onto a graphite condenser. 
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Subsequent heating at 1850-2000 °C showed that the log of the 

weight loss rate was linear with respect to l/T, but the 

apparent atomic ratio of carbon to lanthanum vaporized 

from the condenser varied from 7.2 to 4.9, so that unequivocal 

interpretation of the data was not possible. 

The high loss of carbon observed for the LaCg determina­

tion indicated evaporation of free carbon. In an attempt to 

check this, the weight loss rate was observed at elevated 

temperatures using only a blank graphite condenser suspended 

from the balance. The vapor pressure of carbon was 

calculated from the weight loss observed assuming the 

following: i) the evaporation area was equal to the total 

exterior of the condenser, ii) the accomodation coefficient 

was unity, iii) the vapor was monomeric carbon atoms. The 

pressures thus measured are of the same magnitude as the 

vapor pressure data in Stull and Sinke (38) as compared in 

Table 15, indicating that the vapor pressure of carbon was 

Table 15. Vapor pressure of graphite 

Bun Graphite -1 Balance constant 1.568 mv/mg 

Area 14.2 cm2 AH = 150 kcal 

Time, Mass, Temperature, 10-4 -Log Pc , mm 
sec mv °K T OK Obs. S&S(38) 

10,000 • 656 2193 4.56 6.16 6.12 
3,620 .575 2251 4.44 5.83 5.95 
1,646 .524 2303 4.34 5.47 5-78 
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indeed such that it would invalidate the LaCg measurements. 

B. Materials and Experimental Methods 

1. Sample preparation 

The holmium metal used was the same as that for the vapor 

pressure study. The graphite was "National Special Graphite 

Spectroscopic Electrodes". The carbides used in the 

decomposition pressure studies were prepared by arc melting 

the weighed amounts of holmium metal and spectrographic 

graphite under an atmosphere of argon. The arc melt button 

was then removed to the helium filled dry box and crushed to 

pass through a 200 mesh screen; then remelted and reground 

twice more. The sample was left in a finely divided state, 

as the grinding was considered to be an added precaution that 

the value of the carbon analysis would be more representative 

of the bulk of the sample. The carbides were stored in a 

vacuum dessicator until ready for use. 

2. Crucibles and related equipment 

The determination of the decomposition pressure of the 

carbides by the Knudsen method was carried out in direct 

weight loss method of suspending the crucible from the 

balance beam. To determine the pressures associated with 

the dicarbide, a tantalum effusion vessel was used which 

contained a graphite cup as a liner. The use of the graphite 
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cup is not likely to produce adverse effects on the vapor 

pressure observed, since the equilibrium in question is 

that over the two phases of the reaction: 

H o C2 — Ho(g) + 2 C  (s) 

The reaction was followed by x-ray analysis of the original 

material and the powder patterns of the residueo 

The tantalum vessels used for the determination of the 

decomposition pressure of the sesquicarbide and lower 

carbides were equipped with a tantalum carbide liner since a 

graphite liner would change the composition of the sample. 

To make the TaC liner, a cup 7/16" diameter and 1/4" high 

was cold drawn of .005" tantalum sheet. The cup was packed 

in granular graphite and heated in vacuum to a temperature 

estimated as 2500 °C for ten minutes. X-ray analysis of 

the crucible indicated only the lines of TaC, and the 

tantalum to carbon atomic ratio was determined 1:0.99 by 

igniting random samples of the crucibles to Ta20^. 

In preparation for a run, the vessel of tantalum 

containing the liner of graphite or TaC was fitted with a 

lid of .002" tantalum having an orifice which had been 

carefully measured. The lid was then welded to the vessel 

and the vessel was outgassed at a high temperature in a 

vacuum. The vessel was then weighed and placed in the dry 

box where the carbide was added to the vessel through the 

orifice. The vessel was taken from the dry box, weighed to 
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determine the amount of carbide added, and quickly 

suspended from the balance. This operation required 

exposure to the air for approximately 30 seconds, and 

since the vessel was originally filled with helium it was 

considered that the amount of reaction of the carbide with 

the air was not such that would prevent the use of the 

materialo 

3. Temperature measurement 

Where the carbon content of the material was below 5 

w/o, the pressure developed in the vessel was in the 

_4 -]~ 
measurable range of 10 mm to 10 mm at temperatures which 

could be determined with a Pt-Pt 13$ Eh thermocouple. With 

higher carbon content samples it was necessary that an 

optical pyrometer be used to determine the temperature. 

Calibration of the pyrometer was carried out "in situ™ by 

comparison with the thermocouple up to 1500 °C and the 

melting point of pure platinum. The reproducibility of the 

temperature readings was 2°, and the accuracy was estimated to 

be + 5°. The thermocouples were calibrated at the aluminum 

and copper melting points and the accuracy was considered to 

be + 1°. Where the temperatures were in the range of 1400 to 

o 
1500 C, measurement of the temperature with both the 

pyrometer and the thermocouple were used to determine whether 

the long exposures at the elevated temperatures had caused a 

shift in the calibration of the thermocouple. 
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C. Holmium Dicarbide 

The measurement of the decomposition pressure of the 

dicarbide of holmium was undertaken, as mentioned in the 

introduction, because of concern that the holmium captured 

on the condenser actually did remain there without a 

significant decomposition of the carbide resulting in weight 

loss from the condenser. The discovery that vaporization 

occurred by the loss of holmium vapor led to the measurement 

of the "dissociation pressure" by assuming the opening in 

the condenser to be acting as an orifice and the results 

appeared to yield a very good pressure versus temperature 

plot. (See Table 16 and Figure 10.) Since this was a rather 

new concept in the method of measurement of decomposition 

pressures, it was desired to run the dissociation pressure 

by some more conventional method to collaborate the values 

obtained. To this end, arc melted samples of holmium 

dicarbide were prepared and their decomposition pressures 

determined using a tantalum carbide crucible of 3/8" diameter 

and 1/4" high which was approximately 1/3 filled with holmium 

dicarbide (Run 4, Figure 10). After completing the runs, the 

residue was a sintered mass which appeared to have a dark 

layer on the top surface and the more normal gold color in 

the interior. X-ray diffraction analysis of the dark layer 

showed the lines of the dicarbide and those of graphite, 

while the interior of the mass showed only the lines of the 
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dicarbide. Bather poor decomposition pressure curves were 

obtained and a gradually decreasing pressure at constant 

temperature was noted. It was assumed that the presence of 

the covering of graphite prevented the development of the 

equilibrium pressure. A run (Bun 5> Figure 10) was then 

made in which the dicarbide was contained in a tantalum 

carbide crucible set in a tantalum vessel having an orifice 

of .110" diameter. The pressures measured with this vessel 

were considerably higher (approximately .7 log10 units) than 

those observed with the condenser evaporation runs, and of a 

somewhat higher slope. The scatter was greater than would be 

desired for a good determination. Since the equilibrium 

under consideration was the one between the dicarbide, 

graphite and holmium vapor, the most logical choice for a 

crucible liner was a graphite cup. From the preceding 

experiments it became apparent that the pressures obtained 

with the condensers were not valid representations of the 

true decomposition pressures due to non-equilibrium conditions. 

This would appear to have most probably arisen from the rather 

small evaporation area, in which slow diffusion could have 

allowed surface depletion of the more volatile species. 

At this stage it was decided to proceed further using 

the following changes in the method: the liner for the 

tantalum effusion vessel would be a graphite cup, the holmium 

carbide would be ground to pass through a 200 mesh sieve and 

the orifice would be made as small as convenient with the 
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pressure and temperature requirements. The results of this 

series (Series C-) are contained in the runs C-l, 2, and 4, 

and exhibit very good agreement with each other. (See Figure 

11.) However, the apparent consistency of the data taken 

with the condensers casts some doubt as to which set of these 

values was correct. Two experiments were undertaken to 

elucidate this matter. The first (Bun 8a) was one in which 

material prepared by vaporizing holmium metal onto a condenser 

was ground and placed in a vessel of the type used in the 

latter series. The agreement of the values obtained was 

sufficient to lend support to the accepted values of Series C-. 

The second experiment (Bun 8b) was to take the material of 

Bun 4, grind it to pass through the 200 mesh sieve and run 

in the normal manner. The values obtained were in agreement 

with the final curve of Series C- as represented in Figure 

11, and so it is felt that this curve is reasonably accurate. 

D. Holmium Sesquicarbide 

The first determination on the decomposition pressure 

of holmium sesquicarbide was attempted in a graphite vessel 

having a 1/4" diameter orifice and yielded a continually 

decreasing pressure at constant temperature, apparently due 

to change in composition of the material through interaction 

with the crucible, or to the depletion of the volatile species 

on the evaporation surface. X-ray analysis of the residue 
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indicated that it consisted of dicarbide, with no sesquicarbide 

remaining at the termination of the run. 

Subsequent determinations were carried out using 

tantalum effusion vessels with a tantalum carbide liner to 

contain the finely ground sesquicarbide. The measured 

pressures were quite consistent (see Figure 12) and indicated 

little or no dependence on the area of the orifice, providing 

the orifice diameter was below .050". Little sintering of 

the residue was noted; in fact the residue could be shaken 

as a powder from the vessel through the orifice after a run. 

Visual examination of the tantalum carbide liner after a 

run indicated little reaction had occurred with the holmium 

carbide, and the weight change of the liner was always less 

than .5 mg. 

E. Lower Carbides 

The existence of a third carbide of holmium, Ho^C, has 

been indicated by Spedding et al. (41), and an attempt was 

made to determine the equilibrium decomposition pressure of 

low (1-6 w/o) carbon content. Bather than the easily 

interpreted determinations as observed with the di- and 

sesqui-carbid.es, it was observed that the activity of the 

holmium decreased in a regular fashion as the carbon content 

was increased. This would be expected with an extensive 

range of solubility in the phase diagram. However, the x-ray 
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diffraction patterns which were taken of the original vapor 

pressure sample material and of the residue did not indicate 

a single phase across this range of composition but rather 

that there were other unidentified phases present. Further 

decomposition pressure determinations were not made on this 

region of composition due to the apparent discrepency of the 

observed pressures and the unresolved structures. 

F. Data 

The data observed are listed in Tables 16 through 25 in 

a manner similar to the holmium metal vapor pressure data. 

The values of A and B correspond to the equation describing 

the pressure of holmium over the condensed phases in question, 

AH is the enthalpy observed and PEP is the statistical 

probable error in the values of pressure. 

G. Calculations 

The calculation of the values of pressure and fitting 

of the values to a straight line relationship was done on 

the IBM 650 Computer. From the values of decomposition 

pressure and the standard free energy of formation of the 

dicarbide can be calculated according to the reaction: 
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Table 16. Decomposition of holmium dicarbide from graphite 
condensers 

Bun Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

lO^/T °K -Log P, 
mm 

1 
1 
1 
1 
1 

1542 
1090 
496 
8610 
1353 

1.450 
4.141 
3.544 
1.735 
0.906 

1745 
1865 
1928 
1634 
1720 

5.70 
• 5.36 
5.14 
6.12 
5.81 

4.54 
4.159 
3.867 
5.449 
4.916 

1 
]. 
1 

1046 
1593 
12820 

1.068 
2.631 
O.833 

1750 
1815 
1554 

5.72 

i:S 
4.731 
4.514 
5.943 

2 
2 
2 
2 
2 

596 
,,938 
44280 
8070 
1160 

1.233 
. 2.779 

2.261 
1.743 
.556 

1805 
1848 
1542 
1625 
1706 

m 
6.48 
6.16 
5.87 

4.419 
4.257 
6.059 
5.421 
5.064 

2 
2 
2 
2 
2 

6877 
778 
743 
940 
358 

6.378 
1.252 
1.942 
2.232 
4.994 

1750 
1793 
1833 
1820 
1998 

5.72 
5.575 
5.45 
5.49 
5.00 

4.773 
4.528 
4.313 
4.356 
3.566 

2 294 6.128 2053 4.875 3.386 

3 
3 
3 

441 
4 57 
450 

1.820 m 1867 
1934 
1983 

5.26 
5.17 
5.04 

4.111 
3.820 
3.559 

Ho (g) + 2 C (s) _ H o C 2 ( s )  (I) 

l0« PHo mm - -W x  lo»+6. 723 

A = -RTln (p^) = : RTln Pe 

s  -89,103 + 18.60 T cal/mole 
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Table 17. Decomposition of holmium dicarbide 

Bun Time, Mass, Temperature, IOVT °K -Log P, 
sec mv °k mm 

4a 1790 2.341 1744 5.735 4.18 
4 2956 7.474 1836 5.455 3.87 
4 165 5.575 2189 4.575 2.72 
4 3649 1.401 1779 5.65 4.80 
4 1142 1.615 1866 5.36 4.19 

4 753 1.638 1910 5.24 3.94 
4 432 1.428 1944 5.145 3.76 
4 406 1.936 1992 5.015 3.59 
4 1301 3.173 2022 4.965 3.54 
4 1494 2.672 1903 5.255 4.03 

4 1080 2.8876 1937 5.17 3.85 
4 281 2.8855 2080 4.805 3.25 
4 514 0.3061 1815 5.515 4.51 

5b 4950 I.O83 1841 5.43 3.902 
5 5160 2.589 1894 5.28 3.525 
5 2488 2.518 1962 5.10 3.216 
5 1797 2.555 2005 4.99 3.059 
5 1796 1.411 1936 5.17 3.280 

5 2435 1.406 1912 5.23 3.465 
5 5742 1.675 1855 5.39 3.771 
5 i960 1.352 1928 5.19 3.387 
5 2195 2.131 1969 5.08 3.235 
5 943 1.505 2025 4.94 3.012 

a3/8™ diameter tantalum carbide crucible 

k.110" diameter orifice 

where Pg is the measured value of holmium pressure over the 

HoCg-C mixtures. In the region above the melting point of 

holmium, AF0̂  for the reaction 

Ho ( 1 )  + 2 C  (s) - H o C 2  ( s) (II) 
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Figure 10. Preliminary determinations of 
the pressure of holmium over 
holmium dicarbide 

x Run 4 
. Run 5 
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Table 18. Decomposition pressure data 

Run HoCg-C-l Results: H 89.9 ± *3 

Area 1.528 x 10"2 cm2 A 1.9653 x 104 

Temperature measurement pyrometer B 6.806 

Clausing factor 0.964 PEP 1.2# 

Balance constant I.585 mv/mg 

Point Time, Mass, Temperature, IOVT °K -Log P 
sec mv °K mm 

1 1212 2.204 2117 4.724 2.320 
2 2292 3.206 2086 4.794 2.437 
3 632 1.380 2128 4.699 2.240 
4 695 1.933 2152 4.647 2.132 
5 358 1.151 2177 4.593 2.067 

6 1055 1.516 2088 4.789 2.426 
7 4378 3.697 2035 4.914 2.661 
8 1642 1.048 2008 4.980 2.786 
9 7468 3.319 1976 5.061 2.947 

10 1600 1.781 2062 4.850 2.539 

11 2904 0.964 1953 5.120 3.076 
12 7300 1.388 1911 5.233 3.323 
13 1795 0.825 1981 5.048 2.932 
14 1544 1.437 2047 4.885 2.618 
15 840 1.529 2115 4.728 2.320 

16 323 1.080 2174 4.600 2.050 
17 331 1.388 2198 4.550 1.949 
18 226 1.127 2217 4.511 1.872 
19 169 0.990 2236 4.472 1.800 
20 254 1.187 2213 4.519 1.901 

21 805 2.305 2156 4.638 2.119 
22 1132 1.854 2099 4.764 2.368 
23 1904 1.450 2025 4.938 2.708 
24 6235 0.936 1886 5.302 3.429 
25 21649 1.2729 1821 5.491 3.843 
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Table 18 (Continued) 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

IOVT °K -Log P, 
mm 

26 7525 1.1013 1886 5.302 3.440 
27 4818 .9528 1907 5.244 3.311 
28 4545 1.110 1922 5.203 3.213 
29 4300 1.3283 1936 5.165 3.110 
30 9378 .9945 1856 5.388 3.583 

31 53783 4.0284 1831 5.461 3.737 
32 226.05 .9912 1796 5» 568 3.974 

may be expressed as 

AF°t = -BTln(l/aHo) = RTln P°/pe 

where P° is the vapor pressure of pure holmium liquid. Thus, 

AF°t = -24,424 - 5.13T 

obtained by combining the equations for P° and Pg. From this 

equation it is seen that at 2000 °K 

A F°f = -34.78 Kcal, AS°f = -5.13 eu, 

AH°f = -24.52 Kcal. 

Combining equation I with the equation for the vapor pressure 

of solid holmium yields: 

Ho (s) + 2 C (s) - HoC2 (s) (III) 

AF°T = -19,830 -7.77T 
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Table 19. Decomposition pressure data 

Run HoCg-C-2 Results: H 87.1 + .7 

Area 3.290 x 10"3 cm A 1.9042 

Temperature measurement pyrometer B 6.538 

Clausing factor 0.920 PEP 1.]# 

Balance constant 1.585 mv/mg 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

IOVT °K -Log P, 
mm 

1 2062 1.445 2165 4.619 2.045 
2 1010 0.864 2195 4.556 1.955 
3 • 3850 1.195 2085 4.796 2.406 
4 1528 1.223 2182 4.583 1.985 
5 1360 1.428 2216 4.513 1.864 

6 873 0.986 2239 4.466 1.830 
7 1356 1.039 2184 4.579 2.004 
8 10657 . 1.365 1998 5.005 2.800 
9 3468 1.260 2098 4.766 2.337 
10 1056 0.781 2177 4.593 2.020 

11 771 0.824 2225 4.494 1.855 
12 891 1.148 2245 4.454 1.772 
13 798 1.155 2261 4.423 1.720 
14 1209 0.757 2160 4.630 2.094 
15 1981 0.866 2120 4.717 2.254 

16 3620 0.759 2047 4.885 2.581 
17 31634 2.075 1946 5.139 3.097 
18 3792 0.534 2014 4.965 2.757 
19 2403 1.228 2137 4.679 2.185 

From this equation, the room temperature values would be 

calculated as: 

AF°298 = -19.59 Kcal/Mole, 

AH°298 = -19.83 Kcal/Mole, 
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Table 20. Decomposition pressure data 

Bun HoCg- C-4 Results: H 90.6 + .7 

Area 1.528 x 10~2 cm A 1.9800 

Temperature measurement pyrometer B 6.884 

Clausing factor 0.964 PEP 1.8$ 

Balance constant 1.585 mv/mg 

Point Time, Mass, Temperature, . IOVT °K -Log P, 
sec mv °K mm 

1 5780 0.630 1858 4.890 2.636 
2 3488 3.122 2045 5.382 3.571 
3 3982 1.063 1935 5.168 3.173 
4 3557 2.663 1829 . 5.467 . 3.737 
5 1178 1.329 2067 4.838 2.533 

6 816 1.500 2114 4.730 2.316 
7 523 1.558 2166 4.617 2.101 
8 237 1.077 2215 4.515 1.912 
9 453 1.114 2144 4.664 2.186 
10 953 1.130 2074 4.822 2.510 

11 3933 2.600 2017 .4.958 2.770 
12 1250 . 1.0806 1959 5.105 3.075 
13 4216 0.816 1915 5.222 3.315 
14 15740 1.2838 1852 5.400 3.697 
15 33712 1.538 1806 5.537 3.955 

16 3607 1.2933 1971 5.074 3.041 

A S 298 ~ 7*77  6.u. 

The A Ff of holmium sesquicarbide was calculated by 

combining the equation for the free energy of formation 

of the dicarbide and the information obtained by measuring 

the decomposition pressures of the reaction: 
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Table 21. Decomposition pressure data 

Run HoCg-Sa, b Results; H 8?.4 + .9 

Area 3*956 x ICp cm A 19.071 

Temperature measurement pyrometer B 6.471 

Clausing factor 0.925 PEP 2.1$ 

Balance constant 1.572 mv/mg 

Point Time, Mass, Temperature, 10 VT °K -Log P, 
sec mv °K mm 

la 16438 1.605 1968 5.081 2.999 
2a 3803 1.222 2091 4.782 2.469 
3a 1185 0.721 2156 4.638 2.185 
4a 1271 1.056 2189 4.568 2.047 
5a 5360 1.9146 2084 4.798 2.424 

6a 1240 0.714 2129 4.697 2.212 
7a 1208 0.9849 2164 4.621 2.057 
8a 1511 1.5643 2199 4.548 1.950 
9a 1228 1.6113 2235 4.474 1.844 
10a 1808 0.9406 2119 4.719 2.257 

11a 3375 1.019 2070 4.831 2.499 
12b 2407 1.140 2128 4.699 2.297 
l?b 1359 0.971 2168 4.613 2.114 
l4b 1159 1.125 2207 4.531 1.977 
15b 831 1.005 2236 4.472 1.879 

16b 603 0.898 2257 4.431 1.787 
17b 2447 1.257 2130 4.695 2.262 
18b 2520 0.977 2096 4.771 2.387 
19b 6627 1.584 2053 4.871 2.602 
20b 1425 1.325 2208 4.529 1.996 

21b 671 0.799 2237 4.470 1.886 
22b 1595 1.682 2219 4.507 1.940 
23b 1192 1.252 2222 4.500 1.942 
24b 824 1.174 2249 4.446 1.807 
25b 1316 0.640 2118 4.721 2.287 

26b 1375 1.076 2178 4.591 2.073 
27b 7303 1.369 2028 4.931 2.710 
28b 1540 2.277 2008 4.980 2.815 
29b 1362 1.017 1946 5.139 3.119 
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Figure 11. Decomposition pressure of 
holmium dicarbide 
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Table 22. Decomposition pressure data 

Run Ho2C^5 Results: H 102.5 ; 

Area 3*955 x 10"^ cm2 A 22397 

Temperature measurement pyrometer B 10.614 

Clausing factor 0.925 PEP 2.5# 

Balance constant 1.585 mv/mg 

Point Time, 
sec 

Mass, 
mv 

Temperature, 
°K 

IOVT °K -Log P, 
mm 

1 1475 1.571 1813 5.516 1.983 
2 4260 1.552 1756 5.695 2.456 
3 1910 1.539 1804 5.543 2.106 
4 9475 O.636 1654 6.046 3.204 
5 7400 0.855 1698 5.889 2.962 

6 2330 1.158 1777 5.627 2.319 
7 5200 1.205 1730 5.780 2.656 
8 30300 1.380 1645 6.079 3-373 
9 3817 0.759 1724 5.800 2.723 
10 2143 0.754 1753 5.705 2.472 

11 1081 0.724 1797 5.565 2.187 
12 3554 1.312 1757 5.692 2.450 
13 4105 1.882 17.75 5.634 2.354 
14 45650 1,357 1623 6.161 3.562 
15 6890 0.819 1692 5.910 2.951 

16 3588 0.975 1742 5.741 2.585 
17 17811 1.220 1666 6.002 3.193 
18 1075 1.024 1812 5.519 2.032 
19 1040 1.163 1813 5.516 1.962 
20 1825 1.576 1814 5.513 2.074 

21 574 0.668 1833 5.456 1.942 
22 828 1.070 I838 5.441 1.896 
23 256 0.890 1909 5.238 1.458 
24 220 1.250 1946 5.139 1.241 
25 1725 1.431 1810 5.525 2.092 

26 517 1.226 1883 5.310 . 1.627 
27 302 1.074 1913 5.227 1.448 
28 212 1.066 1938 5.160 1.295 
2.9. 179 1.526 1984 5.040 1.060 
30 739 1.262 1861 5-373 1.773 
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Table 23. Decomposition pressure data 

Bun Ho2C^-415 Besultsî H 102.2 + .4 

Area 3.886 x 10"3 cm2 A 22334 

Temperature measurement pyrometer B 10.539 

Clausing factor 0.925 PEP 1.2$ 

Balance constant 1.585 mv/mg 

Point Time, Mass, Temperature, IOVT °K -Log P, 
sec mv °K mm 

1 662 1.586 1872 5.342 1.617 
2 240 0.876 1903 5.255 1.430 
3 192 1.063 1935 . 5.168 1.246 
4 717 1.275 1854 5.394 1.748 
5 200 0.893 1917 5.216 1.341 

6 136 1.001 1952 5.123 1.120 
7 1-64 1.642 1979 5.053 0.984 
8 337 1.058 1890 5.291 1.497 
9 1777 1.8254 1819 5.498 1.991 
10 982 1.5522 1844 5.423 1.801 

11 4930 4.1954 1808 5.531 2.074 
12 57 2 1.003 1856 5.388 1.754 
13 325 1.019 1898 5.269 1.497 
14 178 0.970 1934 5.171 1.253 
15 160 1.219 1965 5.089 1.104 

16 151 1.533 1985 5.038 0.977 
17 1056 2.357 1874 5.336 1.647 
18 1290 1.021 1799 5.559 2.106 
19 5225 1.288 1726 5.794 2.622 
20 1652 0.8921 1774 5.637 2.275 

21 8816 2.2975 1732 5.774 2.597 
22 37233 2.0143 1646 6.075 3.291 
2 3 5777 0.8621 1701 5.879 2.843 
24 1482 0.5570 1754 5.701 2.435 
25 1770 1.172 1793 5.577 2.185 
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Table 24. Decomposition pressure data 

Hun Ho2C^-715 Results: H 99.5 ± .5 

Area 3.759 x 10-3 Cm2 A 21738 

Temperature measurement pyrometer B 10.283 

Clausing factor O.925 PEP 1.9# 

Balance constant 1.585 mv/mg 

Point Time, Mass, Temperature, IOVT °K -Log P, 
sec mv °K mm 

1 814 1.048 1833 5.456 1.877 
2 508 1.048 1865 5.362 1.668 
3 205 1.314 1948 5.133 1.166 
4 104 1.045 1984 5.040 0.967 
5 845 0.9680 1827 5.473 1.928 

6 339 1.023 1896 5.274 1.499 
7 233 1.068 1928 5.187 1.314 
8 I83 1.5715 1979 5.053 1.036 
9 67 8 1.1227 1854 5.394 1.765 
10 797 1.0281 1839 5.438 1.875 

11 1082 0.9419 1808 5.531 2.049 
12 1227 1.201 1810 5.525 1.998 
13 313 1.5495 1935 5.168 1.280 
14 182 1.456 1973 5.068 1.067 
15 149 2.055 2024 4.941 0.825 

16 139 1.979 2024 4.941 0.811 
17 592 1.536 1883 5.311 1.566 
18 1764 0.9650 1783 5.609 2.254 
19 5700 0.8050 1698 5.889 2.853 
20 45910 3.380 1665 6.006 3.140 

21 3020 0.8920 1744 5.734 2.527 
22 3520 1.5594 1770 5.650 2.347 
23 6980 1.7902 1735 5.764 2.589 
24 4490 0.7977 1714 5.834 2.751 
25 6805 0.7426 1687 5.928 2.966 

26 15020 0.6991 1630 6.135 3.344 
27 181 2.035 1999 5.003 0.917 
28 1014 II.503 2014 4.965 0.911 



www.manaraa.com

87 

Table 25. Decomposition pressure data 

Sun H02C-J-8I5 Results: H 100.9 + 1.0 

Area 3.969 x 10"3 A 22040 

Temperature measurement pyrometer B 10.461 

Clausing factor 0.925 PEP 3% 

Balance constant 1.585 mv/mg 

Point Time, 
sec 

Mass, 
mv 

Temperature, 104/t oK -Log P 
mm 

1 
2 

I 
5 

1685 
520 
149 
129 
4770 

0.979 
1.392 
0.855 

1838 
1892 
1959 
1999 
1717 

5.441 
5.285 
5.105 
5.003 
5.824 

1.959 
1.553 
1.178 
.958 
2.771 

6 
7 

1295 
4912 

1.021 
0.6120 

1795 
1697 

5.571 
5.893 

2.118 
2.931 

2 HogC^ - 3 Ho C2 + Ho (g, P'e) (IV) 

PHo 
mm = t2205.5 x 10^ + 10.22 

AP°t . = -RTln ( aHo^ " ™BTln P'e/°p 

= -37,583 - 10.90 T 

and thus, for the reaction above the melting point of holmium, 

2Ho (1) + 3C (s) - HO2C3 (s) (V) 

may be expressed as 
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Figure 12. Decomposition pressure of 
holmium sesquicarbide 
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AF° 
f 

-17,994 - 2.24T 

The free energy for the reaction of 

2 Ho (s) + 3C HogC^ (s) (VI) 

may be expressed as 

AF°f = -11,053 -5.21T 

obtained by combining equations III and IV with the equation 

for the sublimation pressure of holmium metal. 

Few of the metallic carbides have been studied 

thermodynamically, so that there is not a great deal of 

material with which to compare the values of this study. 

Some of those carbides which have been measured and some of 

the more pertinent estimates are listed in Table 26. The 

values are listed on the basis of kcal per gram atom carbon 

to permit a more informative comparison. It is seen that the 

elements of Groups VB and VIB of the periodic chart form the 

most stable carbides, apparently due to the favorable bonding 

available as described by Bundle (48). In general the 

dicarbides of the heavier elements are next in order of 

stability and many of these have melting points over 2000 °C. 

The carbides of the Groups I, II and III are in general 

H o  Discussion 
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Table 26. Thermodynamic 
carbides 

values of formation metallic 

AF°298 AH°298 AS°298 

TiC -42.9 -43.8 -I.90 

ZrC -38.9 -44.4 -2.7a 

TaC -38.1 •%38.. 5 -1.14 

Mn_C - 3-4 - 3.6. -0.53 

Pe3C 4.8 5.8 3-4 

Co^c 4.6 5.1 1.6 

|Cr^C2 -10.6 -10.5' -3.ob 

iThC2 -16.4 -16.5 -0.2 

gCaC2 - 8.7 - 8.1 2.1 

iuc2 -13.9 -I3.5 1.4 

1/3 U2C3 . -23.6 -23.3 -0.3 

iCeC2 (-15.7) (-16) (-1.0) (estimated) 

1/3 Ce2C3 (-24.3) (-25) (-2.5) (estimated) 

|LaC2 -21° 

&HoC2 - 9.8 - 9»9 3.8^ 

1/3 Ho2C3 - 3.7 - 3.7 1.7d 

Taken from 43, 45 except as noted: 

^Reference 46 ^Reference 25 

^Reference 4? dThis study 
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somewhat less stable and usually are classified as ionic 

rather than metallic carbides. With the exception of MggC^ 

the only sesquicarbides are those of the actinide and 

lanthanide elements. 

It was noted that the stability of the rare earth 

carbides varies somewhat on the same order as the volatility 

of the metals themselves. This is based on the observations 

of Chupka that LaC^ vaporized congruently, and that HoC^ was 

found to decompose into the metal and graphite in this study, 

and that the carbides of ytterbium and europium are difficult 

to prepare in the pure state. This same trend has been noted 

in the vaporization of the sesquioxides of the rare earths 

by Panish (49), in which the less volatile elements (lanthanum, 

neodynium, praseodynium, gadolinium, terbium and lutetium) 

have sesquioxides which vaporize according to the equation: 

M2°3(s) "* 2 MO (g) + 0 (g) 

while the oxides of the more volatile elements of samarium, 

europium, and ytterbium vaporize according to the reaction: 

M2°3(s) 2 M (g) + 3 0 (g) 

This might be taken to lend support to postulate of Chupka 

(25) who has suggested in the light of his work on the carbides 

and oxides that the Cg group might be considered similar to 

the oxygen atom in stability and nature of compounds which 

they form. From this trend the carbides of samarium, 
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europium, holmium, erbium, thulium, and. ytterbium would be 

expected to decompose to the metal and graphite. The rather 

qualitative evidence obtained in the preparation of these 

compounds is in agreement with this postulate. It is 

interesting to note that the metals which have the tendency 

to form something less than the tripositive metallic state 

(Eu, Yb) do not have the tendency to form the compounds 

of divalent nature, such as MO and MC2, in the vapor form. 

From a qualitative viewpoint, the stability of the 

sesquicarbide compounds can be inferred in the cases of 

magnesium, lanthanum and uranium sesquicarbides from the fact 

that these compounds decompose peritectally. L&2C3 was 

found by Spedding et al. (50) to decompose at 1415 °C 

according to the equation 

2 La2C3(s) - 3 LaC2(s) + La(l) 

and found that U2C^ decomposes at 2050° by the equation 

U2C_ - uc. + UC2 

With the exception of the magnesium compound, all of 

the sesquicarbides with established structure are isomorphous 

with Pu2C3# From the equations for the free energies of 

formation of holmium sesquicarbide and dicarbide, it can be 

calculated that the sesquicarbide is unstable with respect 

to disproportion to the dicarbide and pure holmium metal at 

2400 °K. For this calculation it is assumed that the 
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enthalpies of decomposition are constant in the temperature 

range in question. It is expected that this temperature is 

above the melting point of the compound, so that if the 

assumptions made are valid, the sesquicarbide should melt 

congruently. 

The region of the holmium-carbon phase diagram listed 

here as Lower carbides is from 0-7 w/o carbon. The 

decomposition pressure curves of the alloys of less than 1 

w/o carbon were very close to the vapor pressure of holmium 

metal in absolute value and slope. However there appeared 

to be some dependence of the pressure on the amount of 

holmium vaporized from the cell and the points were not 

reproducible. X-ray analysis of the material was identical 

at the beginning and end of the run and indicated the presence 

of holmium metal (hep) and a fee structure. The data taken 

from the alloys in this region are then interpreted 

qualitatively as indicating a rather low solubility of carbon 

in holmium at temperatures up to 1300 °C and the existence of 

a two phase (hep) - (fee) region. 

In the region of the diagram from 1 to 7 w/o carbon, 

the activity of holmium was observed to decrease with 

increasing carbon concentrations. As previously noted, 

however, the x-ray diffraction patterns of the material 

could not be attributed to the presently known structures. 

The structure of the tri-rare earth carbide was 

determined (41) to be a fee structure with only a fraction of 
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the octahedral interstices filled with the carbon atoms. In 

the case of yttrium, this fraction was noted to vary with a 

change of the carbon concentration. Thus it is not 

surprising to find that a rather extensive range of 

solubility was indicated by the decomposition pressures, 

since additional carbon atoms might be accomodated by filling 

more of the octahedral holes. It was observed that the 

pressure of holmium over the tri-rare earth phase was not 

greatly different than the pressure of holmium metal 

indicating that the phase is not very stable. This is as 

would be expected in view of the fact that this phase is 

observed with the heavy rare earth elements but not for the 

light rare earth elements. 
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